Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The glory, a striking optical phenomenon seen from space in unpolarized satellite images can be mapped onto the cloud's droplet sizes with a characteristic scale of 10. Such a mapping allows us to infer the mean and variance of the cloud droplets' radius, an important property that has remained elusive and inaccessible to passive unpolarized satellite sensing. Here, we propose a simple and robust polarization‐like differential approach to map the glory's spectral properties to the desired moments of the droplet size distribution. By taking the differences between two spectrally close channels, we reduce multiple scattering contributions and amplify the single‐scattering signal, thus allowing for a simple and rapidly converging map from glory to droplet size distribution. Moreover, the droplet information reflects the upper part of the cloud, adding another sample to the traditional multiple scattering‐based retrievals that reflect droplet properties deeper in the cloud.more » « less
-
Abstract. A large convection–cloud chamber has the potential to produce drizzle-sized droplets, thus offering a new opportunity to investigate aerosol–cloud–drizzle interactions at a fundamental level under controlled environmental conditions. One key measurement requirement is the development of methods to detect the low-concentration drizzle drops in such a large cloud chamber. In particular, remote sensing methods may overcome some limitations of in situ methods. Here, the potential of an ultrahigh-resolution radar to detect the radar return signal of a small drizzle droplet against the cloud droplet background signal is investigated. It is found that using a small sampling volume is critical to drizzle detection in a cloud chamber to allow a drizzle drop in the radar sampling volume to dominate over the background cloud droplet signal. For instance, a radar volume of 1 cubic centimeter (cm3) would enable the detection of drizzle embryos with diameter larger than 40 µm. However, the probability of drizzle sampling also decreases as the sample volume reduces, leading to a longer observation time. Thus, the selection of radar volume should consider both the signal power and the drizzle occurrence probability. Finally, observations from the Pi Convection–Cloud Chamber are used to demonstrate the single-drizzle-particle detection concept using small radar volume. The results presented in this study also suggest new applications of ultrahigh-resolution cloud radar for atmospheric sensing.more » « less
-
Abstract Clouds, crucial for understanding climate, begin with droplet formation from aerosols, but observations of this fleeting activation step are lacking in the atmosphere. Here we use a time-gated time-correlated single-photon counting lidar to observe cloud base structures at decimeter scales. Results show that the air–cloud interface is not a perfect boundary but rather a transition zone where the transformation of aerosol particles into cloud droplets occurs. The observed distributions of first-arriving photons within the transition zone reflect vertical development of a cloud, including droplet activation and condensational growth. Further, the highly resolved vertical profile of backscattered photons above the cloud base enables remote estimation of droplet concentration, an elusive but critical property to understanding aerosol–cloud interactions. Our results show the feasibility of remotely monitoring cloud properties at submeter scales, thus providing much-needed insights into the impacts of atmospheric pollution on clouds and aerosol-cloud interactions that influence climate.more » « less
-
Abstract Glory is a beautiful optical phenomenon observed in an atmosphere as concentric colored rings reflected by clouds or fog around an antisolar point. Here we report that true color glories, although faint, are discernible in raw unpolarized satellite images by a naked eye on a daily basis, thus constituting a large and untapped reservoir of cloud data for which a simple diffraction-like approximation links cloud droplet diameter and variance to the glory’s structure.more » « less
An official website of the United States government
